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Abstract

We present the results of a search for a new particle X produced in pp̄ collisions at
√

s = 1.96 TeV and subsequently decaying to Zγ . The
search uses 0.3 fb−1 of data collected with the DØ detector at the Fermilab Tevatron Collider. We set limits on the production cross section times
the branching fraction σ(pp̄ → X) × B(X → Zγ ) that range from 0.4 to 3.5 pb at the 95% C.L. for X with invariant masses between 100 and
1000 GeV/c2, over a wide range of X decay widths.
© 2006 Elsevier B.V. All rights reserved.

There is considerable evidence that the standard model (SM)
is incomplete [1]. Signs of new physics may appear in the form
of a new particle (X). If X is a scalar, pseudo-scalar, or ten-
sor, its decay to lepton pairs might be highly suppressed, but it
could have a large decay branching fraction (B) to the di-boson

* Corresponding author.
E-mail address: dalton@fnal.gov (A. Alton).

1 On leave from IEP SAS Kosice, Slovakia.
2 Visitor from Helsinki Institute of Physics, Helsinki, Finland.

final state Zγ . A search for X in the Zγ final state thus com-
plements previous searches (for example [2]) for production of
a new vector boson in the lepton pair decay mode.

Events with pairs of vector bosons have been studied as
tests of the SM of electroweak interactions. Specifically, the Z

plus photon final state (Zγ ) has been investigated by the DØ
[3,4] and CDF [5] Collaborations using pp̄ collisions and by
the LEP Collaborations [6–8] using e+e− collisions. In these
cases, the measured cross section and photon energy distri-
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Fig. 1. The Feynman diagrams for standard model sources of di-lepton plus γ

events are shown. Diagram (a) shows qq̄ → Z-boson plus γ , where the photon
is radiated from the quark or anti-quark. Diagram (b) shows qq̄ → Z/γ , where
the photon is radiated from one of the Z boson’s decay products. Diagram (c)
shows Higgs production and decay into a Z boson and a photon.

bution were used to set limits on anomalous Z-photon cou-
plings, but no explicit searches for new particles decaying to
Zγ were performed. The L3 Collaboration [9] searched for
Higgs boson production, with subsequent decay of the Higgs
to Zγ , in electron–positron collisions at the LEP2 collider,
and set cross section limits for Higgs boson masses up to
190 GeV/c2.

In the SM, the di-lepton plus γ final state, including Zγ , is
expected to be produced through radiative processes (Figs. 1(a)
and (b)). In addition, this final state is also expected from Higgs
boson production and decay (Fig. 1(c)). Although the Higgs
boson mass is unknown and the predicted H → Zγ branch-
ing fraction is O(10−3), extensions to the SM can significantly
increase this branching fraction [10–13]. Other SM extensions
predict new particles that decay into Zγ . For example, a Z′ bo-
son can decay radiatively to a Z boson and a photon [14]. In
models with a fourth generation of fermions, a top and anti-top
quark bound state (toponium) may exist [15,16], and this state
can decay to Zγ . In theories with compact extra dimensions,
massive Kaluza–Klein spin-2 gravitons can also decay to the
Zγ final state [17]. The presence of resonance behavior in the
Zγ final state can thus signal the presence of a wide variety of
new physics. In order to make quantitative statements, we will
assume that this new physics manifests itself in the form of a
spin 0 particle.

A large sample of Zγ events has been collected by the DØ
experiment and analyzed to measure the Zγ cross section and
set limits on anomalous ZZγ and Zγγ couplings [3]. The Fer-
milab Tevatron Collider provides a higher energy reach than
that available to previous experiments, and so this sample de-
serves further scrutiny. Experimentally, Z bosons are identified
through their decay to charged lepton pairs (�� = ee or μμ).
Photons are measured with high precision from their electro-
magnetic showers. The Zγ final state has small backgrounds.
We focus on, by tightening kinematic selection criteria, and
study the mass distribution of the ��γ events in a sample of
0.3 fb−1 of pp̄ collision data collected with the DØ Run II de-
tector from April 2002 to June 2004 at the Fermilab Tevatron
Collider at

√
s = 1.96 TeV.

The DØ detector [18] includes a central tracking system,
composed of a silicon microstrip tracker and a central fiber
tracker, both located within a 2 T superconducting solenoidal
magnet and optimized for tracking and vertexing capability at

pseudorapidities3 of |η| < 2.5. Three liquid argon and uranium
calorimeters provide coverage up to |η| ≈ 4.2: a central sec-
tion, and two end calorimeters. A muon system resides beyond
the calorimetry, and consists of tracking detectors, scintillation
counters, and a 1.8 T toroid with coverage for |η| < 2. Lumi-
nosity is measured using scintillator arrays located in front of
the end calorimeter cryostats, covering 2.7 < |η| < 4.4. Trigger
and data acquisition systems are designed to accommodate the
high luminosities of the Run II Tevatron.

The analysis is conducted in two channels, one where the
Z boson decays into electrons and the other where it decays
into muons. Electron candidate events are required to satisfy
one of a series of single electron triggers. The electron channel
requires that electron candidates be isolated in the calorime-
ter, have longitudinal and transverse energy deposition profiles
consistent with those of an electron, have a transverse momen-
tum pT > 15 GeV/c, and be contained in either the central
calorimeter (CC, |η| < 1.1) or one of the end calorimeters (EC,
1.5 < |η| < 2.5) and not in the transition region between the
central and the end calorimeters. If an electron candidate is in
the CC, it is required to have a spatially matched track from the
central tracker. One of the electrons must have pT > 25 GeV/c.
The efficiency for a di-electron candidate to satisfy the trigger
and for both electrons to satisfy all quality requirements lead
to an event efficiency of 0.69 ± 0.05 if both electrons are in
the CC and 0.78 ± 0.05 if one electron is in the EC. Events
with both electron candidates in the EC are not considered due
to a small expected number of events from X and large back-
grounds. These efficiencies are measured with the inclusive Z

boson candidate events.
Muon candidate events must pass one of a suite of single

or di-muon triggers. The muon channel requires two candi-
date muons with pT > 15 GeV/c and opposite charge. Both
muons must be matched to tracks found in the central tracker.
The background from heavy flavor production is suppressed by
requiring the muon candidates to be isolated. The background
from cosmic rays is suppressed by requiring that the muons
come from the interaction region and are not exactly back-to-
back. The efficiency for di-muon event selection and trigger is
0.84±0.05 per event. This efficiency is measured with Z boson
candidate events.

Photon candidates must be isolated in the calorimeter and
tracker, have longitudinal and transverse shapes in the calorime-
ter consistent with those of a photon, have pT > 25 GeV/c,
and be contained in the central calorimeter (|η| < 1.1). The ef-
ficiency is around 0.85 at 25 GeV/c and rises to a plateau of
0.90 at 35 GeV/c.

Both di-electron and di-muon candidate events are further
required to have a di-lepton mass greater than 75 GeV/c2, and
a photon separated from both leptons by �R> 0.7.4 These re-
quirements reduce the contribution from events in which a final

3 We use a cylindrical coordinate system about the beamline in which positive
z is along the proton direction, θ is the polar angle, φ is the azimuthal angle,
and pseudorapidity (η) is defined as η = − ln[tan(θ/2)].

4 In the DØ coordinate system �R=
√

(�φ�γ )2 + (�η�γ )2.
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state lepton radiates a photon. The detector acceptance times
particle identification and trigger efficiency, for all require-
ments described, rises from about 18% to about 20% for masses
from 100 to 800 GeV/c2 and at higher masses decrease. At
mass greater than 800 GeV/c2, a significant number of leptons
fall within the isolation region of the other lepton, and charge
misidentification becomes significant. The uncertainty on these
are the dominant contributors to the systematic uncertainty on
the expected number of signal candidates. At 800 GeV/c2, the
uncertainty is approximately 10% and at 1000 GeV/c2, the un-
certainty has risen to 40%.

To improve the di-lepton–photon mass resolution in the
muon channel, the muon transverse momenta are adjusted by
employing a one-constraint kinematic fit that forces the di-
muon mass to equal the on-shell Z-boson mass. This constraint
is only enforced if the fit has χ2/d.o.f. < 7. Monte Carlo studies
show this technique improves the three-body mass resolution
from 6.7% to 3.4%, which is comparable to the mass resolu-
tion of the electron channel, 3.9% obtained without a kinematic
fit. For the Zγ mass range considered, photon energy contribu-
tions to the three-body mass resolution is much larger than that
of the Z boson width, which is neglected in the kinematic fit.

Backgrounds to Zγ production from the decay of a new par-
ticle include the SM Zγ and Z + jet processes, where the jet is
misidentified as a photon. Backgrounds from processes with a
photon where one or both of the leptons is due to a misidentified
jet are found to be negligible. Contributions from Zγ events
with Z → ττ and subsequent leptonic decays of the tau are
less than 1% of the sample. Contributions from WZ and ZZ

processes, where electrons are misidentified as photons, are also
less than 1% of the sample.

Efficiencies and background contributions are calculated us-
ing independent data samples and Monte Carlo simulations.
Scalar particle decays to Zγ are modeled using PYTHIA [19]
SM Higgs boson production in which the Higgs boson is forced
to decay to Zγ , and the Z boson is forced to decay into leptons.
For the SM Zγ events, we use an event generator employ-
ing first-order QCD calculations and first-order EW radiation
[20]. These events are processed through a parameterized de-
tector simulation that is tuned on Z boson candidate events. The
background due to jets misidentified as photons is estimated by
scaling the measured Z + jet event rate by the measured proba-
bility for a jet to mimic a photon [3].

The final sample used in the analysis consists of 13 candi-
dates in the electron channel and 15 candidates in the muon
channel. We expect from SM sources 11.2 ± 0.8 events in the
electron channel and 12.9 ± 0.9 events in the muon channel.
Approximately 75% of the expected SM contribution is due to
SM Zγ . Uncertainties in the SM contributions are due to un-
certainties in the luminosity, higher order QCD contributions,
parton distribution functions, and the rate at which a jet mimics
a photon. The luminosity uncertainty is the largest: 0.5 events
for the electron channel and 0.7 events for the muon channel.
In Fig. 2 we plot the three-body mass against the two-body
mass for the candidates. The muon candidates are shown be-
fore the two-body mass constraint is applied. A single candi-
date fails the χ2 cut for this constraint; it is the candidate with

Fig. 2. Distribution of candidates in the three-body mass, Mllγ , vs two-body
mass, Mll , plane is shown. The electron candidates are blue circles and the
muons are red starts. The muon candidates are shown before the two-body mass
constraint is applied.

Fig. 3. Distribution of the three-body mass, Mllγ , for candidate events and SM

expectations. The signal shape for a 130 GeV/c2 scalar decaying to Zγ with a
σ(pp̄ → X) × B(X → Zγ ) = 1 pb is also shown.

Mll = 76 GeV/c2 and Mllγ = 107 GeV/c2. The Mllγ spectrum
of the electron and muon data samples individually are consis-
tent with the shapes of their respective Monte Carlo samples.
The three-body mass, Mllγ , of the combined sample is shown
in Fig. 3. The SM expectations are also shown together with
those for a 130 GeV/c2 scalar decaying into Zγ with σ × B of
1 pb. This figure is just for illustration purposes and is not used
further in the analysis.

None of the 28 candidate events has more than one photon or
more than two leptons. Among all the events we only find three
jets with pT > 15 GeV/c. Two of these jets are in a single event.
The missing transverse momentum in all candidate events is
less than 20 GeV/c.

We use two methods in our search to ensure sensitivity to
scalar states over a broad range of natural decay widths. The
first looks for an excess in a sliding narrow window in the Mllγ
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spectrum, while the second sets a sliding lower mass threshold
and counts events above this threshold. The window technique
gives very good separation of signal from background; however
it is sensitive to the natural width (Γ ) of the new particle. The
separation of signal from background of the window method is
highest when Γ is small compared to the mass resolution. The
size of the search window was chosen to be 4.4% of the mass
by optimization of the signal MC acceptance for a 130 GeV/c2

Zγ resonance over the square-root of the SM background ex-
pectation.

The threshold technique also generally requires knowledge
of Γ . To reduce this dependence, we place the threshold at the
median value of the mass distribution (M ′), which introduces
an acceptance factor of 0.5. The value of M ′ is the same as
the nominal mass of the particle if its width is fairly narrow
(� 4 GeV/c2), or if its mass is fairly low (� 250 GeV/c2). If
neither condition is met, the available parton luminosity begins
to affect the generated mass distribution. The SM Higgs boson
provides a good example of this effect. A Higgs with a nominal
mass of 250 GeV/c2 has a width of 4 GeV/c2 and the me-
dian mass is 249.7 GeV/c2. As the nominal mass increases, the
width grows and the median mass begins to deviate from the
nominal value. At 350 and 450 GeV/c2, the widths are 15 and
42 GeV/c2, respectively; and the median masses are 346.4 and
401.0 GeV/c2, respectively.

Using these techniques, we determine the agreement be-
tween data and SM expectations, taking into account system-
atic uncertainties. Using the threshold technique, we find that
the smallest probability of agreement between data and SM
expectations is 7%, which occurs at the median mass M ′ =
230 GeV/c2. Applying the narrow mass window method to
search for objects with Γ → 0 (i.e. generated within the mass
bin), we find that for a mass of 140 GeV/c2, the probability of
agreement between the data and SM expectation is 0.8%. The
window at 140 GeV/c2 has the lowest probability of agreement
in the mass range considered. To further assess the statistical
significance of this effect, we generate an ensemble of 100 000
simulated experiments in which only SM sources for Zγ were
included and possible systematic effects are neglected. Eleven
percent of the experiments contain a search window with a
probability of agreement with the SM expectation of 0.5% or
less. The disagreement of 140 GeV/c2 mass window has a sig-
nificance of less than 2.5 standard deviations and lies at the
mass where the SM background is largest and, therefore, where
the ensemble tests indicate fluctuations would also be largest.

Since we find no excess in the data compared to the SM ex-
pectation, we extract limits on σ(pp̄ → X) × B(X → Zγ ) for
new scalar states. The limits are set using a Bayesian technique
[21] with a flat prior for the signal and with systematic uncer-
tainties on the signal and background taken into account.

We extract the sensitivity and limits for two cases. In the first
case, Fig. 4, we use the window technique and assume the width
is negligible compared to the detector resolution. In the second
case, Fig. 5, we use the threshold technique where the width is
allowed to be at the other extreme. The expected limit for the
window technique is less stringent where SM sources provide
the largest number of events; it is more stringent between 300

Fig. 4. The expected and observed cross section times branching fraction 95%
C.L. limit for a scalar X decaying into Zγ as a function of M for narrow scalar.

Fig. 5. The expected and observed cross section times branching fraction 95%
C.L. limit for a scalar X decaying into Zγ as a function of M ′ for wide scalar.
M ′ is the median of the true mass distribution for a generic object using the
arbitrary width technique.

Fig. 6. The cross section times branching fraction 95% C.L. limits for a narrow
scalar X decaying into Zγ as a function of M . Curves representing the cross
section times branching ratio expected from three variations of the Higgs are
shown.
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and 800 GeV/c2 where no events are expected; it finally rises
with mass as efficiency decreases and the systematic uncertain-
ties increase. We see qualitatively similar structures from the
threshold technique limit. In comparing the two limits it should
be noted that M ′ is lower than the nominal mass of the particle.
In Fig. 6, curves representing the expected cross section times
branching fraction for three Higgs models are compared to the
limits. These models are the SM Higgs boson [10], a fermio-
phobic Higgs boson [12], and a model with four generations of
quarks [13].

In summary, we have performed the first search for Zγ res-
onant states at a hadron collider with an invariant mass greater
than 100 GeV/c2. We find no statistically significant evidence
for the existence of these objects. Narrowing our search to
scalar and pseudo-scalar resonances, we limit the production
cross section times branching fraction to less than 0.4 to 3.5 pb
depending on the mass and width.
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